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About ANSYS

- Worldwide presence « Many CFD solutions
— 1,600 employees — General purpose
— 60+ locations & network of * ANSYS FLUENT
200+ channel partners in 40+ « ANSYS CFX
countries  ANSYS CFD (CFX + FLUENT)
— 21 major development centers — Special purpose
on 3 continents - Airpak, Icepak, POLYFLOW,
— ~500 developers worldwide BladeModeler, Turbogrid

— Integrated

* Develop and market a broad
» FLUENT for CATIA v5

range of advanced simulation
tools

— Structural Mechanics
— Fluid Dynamics
— Electromagnetics
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Solver

« ANSYS CFX used for all

analyses
_ Chosen because of P e e ey e 1T

existing integration with
ANSYS Mechanical for
Fluid Structure Analysis
(FSI)

— No FSI used In
workshop, but
important to design S e

* Consider for future work
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Discretization and Solution Method WNANSYS

* Discretization

— Element Vertex Finite
Volume Method

— 2" order High Resolution
(bounded) upwind advection

— Rhie-Chow for pressure-
velocity coupling.
» Solution Method

— Implicitly coupled Mass and
momentum

— Linear equations solved
using Coupled Algebraic
Multigrid.

— Timestep to control
convergence
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Mass: Co-located, All Speed — WNANSYS

Mo = ool oY i
* Implicit all-speed Newton Raphson linearization:
N Ny (O O (N 0,0
R u + 0 u —p u
* Density transport treatment, implicit in pressure via EOS:

oo =0 + B N

« P-V coupling via momentum analogy achieves co-location:

uip — in + dip(%)ip

* Importance:
— All speeds/equations of state supported
— Natural low-to-high speed numerics
— Implicit in pressure and velocity



Timestep selection

 Timestep based on Mean
Aerodynamic Chord (MAC)

MAC Timescale = MAC/airspeed

* Could run as large as [aieilisent Fan Conti e axs conre wnations Run FALIPW exCosres 32dsg 003
MAC Timescale x 10 ZiekaSestlEiis » Geer Pont ] —
— Same periodic behavior with MAC ¥ E
Timescale x 1.0 | Stable within ~200 to  [IEEL g
« Best behavior with L VT
MAC Timescale/10 and 2 additional " e
coefficient loops ] -
- Smaller timestep required for Al ||| e
medium grid due to face anales e = =

un Configl hex extra coarse transitional un‘ iLi exCoarse 32de
(O . 9 d eg rees ! ) fun Config 32d:g ool ’ ’ " thl_omntuz and I\ailassg o0
MAC Timescale/100 3

— Increased overall number of iterations
but additional coefficient loops not oo )
required \\ e

Momentum and Mass
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Turbulence Modeling

« SST + Menter’s Gamma-Theta predictive transition model

— Solves 2 Transport Equations
* Intermittency (y) Equation
* Transition Onset Reynolds number Equation

- Used Menter-Langtry Onset Correlation
« Multiple transition mechanisms
— Natural, Bypass, and Separation induced transition

\S - ..
(('\\o") | ¥~ Transition —
‘ Turbulence Intensity (0 to 10%) (a
Configl @ 13 [deg] /77/}73
r
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Additional notes

* Non-standard solver settings
— High Resolution (2" order iteratively bounded) advection scheme
for turbulence equations

* Required for transition modeling but also applied to fully turbulent cases
for consistency

— Added extra coefficient loops (2 to 3) to steady the solution

* Feedback due to sharp transition location
« Steady state uses pseudo-transient scheme instead of under relaxation

— Ran transient with 15* order backward Euler scheme to allow additional
coefficient loops

« Comments on convergence
— Residuals were reduced but never fully converged
» Possibly due to grid quality but may also relate to flow instability

— Small fluctuations in integrated quantities (CL, CD, CM) still
observable

— lteration (convergence) error was greater than discretization (grid
convergence) error but small relative to experimental error
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* Grid
— Unst-Hex-FromOnetoOne-
A-v1
* Solver
— ANSYS CFX 12.1
* Due to resource

restrictions, not all
points were run

ﬂ

Extra-coarse Y

Extra-coarse 6,068,737 5,957,632 Medium . e o o o
Coarse 20,356,741 20,107,008 Fine

Medium 48,104,801 47,661,056 ﬂ

Fine 161,853,985 160,856,064 Medium
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Lift Coefficient
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Turbulence Intensity near surface
y I\NSYS

(range 0 to 10%) showing transitio

13[deg] | \N ) S 28 [deg]

Dark blue regions are laminar

34 [deg] | \

W\
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32 [deq] 37 [deq]
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Turbulence Intensity at 65% Span
(range 0 to 10%) e ANSYS

Transitional Turbulent
d
g [d
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Comparison of turbulent and
ftransitional runs’at 28 degrees
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Turbulence Intensﬂy over slat at 3
degrees

I\NSYS

Transitional Turbulent

L

Separation
Induced
Transition
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Results from Fluent 13

« Similar CFD numerics as CFX
— Pressure based solver with all-speed mass formulation
— Rhie-Chow
2"d order numerics
— Coupled AMG solver
« Same physical models
— SST + Gamma-Theta Transition
— MAC based timestep to control convergence

28% Span on Main Airfoil

13 [deg] angle of attack
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Lessons Learned p— %SYS

* Laminar to turbulent transition causes separation
at leading edge of slat

* Accurately predicting the transition location Is
Important to

— Improve prediction of CL, CD and CM
— capture maximum CL and predict separation
» Separation location is sensitive to grid

- Laminar boundary layer on slat influences
secondary flows between slat and main airfolil.

- Secondary flows between slat and main airfoll
may play an important role in predicting
maximum CL
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Next steps? p— %SYS

Grid:

* Improve mesh to improve prediction of
transition location

— Streamwise refinement in separation region

* Improve spanwise resolution of secondary
flows

Other
* Include the effects of structural deformations
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* Co mments and
suggestio is?




McDonnell Douglas 30P-30N 3-Element Flap |

Re = 9 million
Mach = 0.2

C =0.5588 m
AOA = 8°

Exp. hot film

transition

location

measured rror: 6.1 %
as f(x/c)

ain lower transition:

lap transition:

xp. = 0.931

ain upper transition:
rror: 2.2 %

rror: 1.1 %

Slat transition:
FX =-0.056
xp.=-0.057

rror: 0.1 %

CFX 2005 Transition Modelling




Compare CP

Transitional, AoA = 28 [ degree

CP.Difference

l 10.0000

‘ 3.1623
[ 1.0000
‘ [ 0.3162

0.1000

I 0.0316

- 0.0100
| 00032
[ 0.0010
0.0003
0.0001
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Separation and surface streamline§Z\NSYS“
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.Separation at 34 and 37I degrees
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Location of recirculation /\%/\NSYSD

Note the gap
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Miscellaneous e %SYS

« Useful additional variables

Turbulence Intensity = sqrt(2/3*Turbulence
Kinetic Energy)/<airspeed | Velocity>

* Visualizing separation
— Create Isosurface = 0.9*airspeed

— Clip isosurface to

* Less than Inlet total pressure (eliminates regions
below airfoil) and greater than .25 [cm] wall distance
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